If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-55x=56
We move all terms to the left:
x^2-55x-(56)=0
a = 1; b = -55; c = -56;
Δ = b2-4ac
Δ = -552-4·1·(-56)
Δ = 3249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3249}=57$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-57}{2*1}=\frac{-2}{2} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+57}{2*1}=\frac{112}{2} =56 $
| x+7.2=14.3 | | 7(5x+7)=259 | | 54a+2=70 | | 3p-2p=5 | | 4x=32.1 | | 6(x+4)=3x3 | | 11y-63= | | 5(8x-11)=305 | | 3.4+m-1.3=6.8 | | .75x=0.4x+100 | | 6a=26=4a | | -6v=-10-5v | | -4y=-2y+4 | | w/6+5/8=−1/3/8 | | 4(5x-6)=156 | | 14/55=p/100 | | 2z^2+6z=180 | | -6h^2-h+3=0 | | 4(8x+7)=188 | | g÷1/5=11/4 | | 3.6=2p | | 12.5d=13.3d+15.12 | | 4t-4=t^2 | | 3x(8x+9)=0 | | 45+12.5x=75+7.5x | | -6x+6*9/4=6 | | 10-3D=d-10 | | 5^x+1=41 | | 8x+39=-3(-6-4x) | | w/4+20=22 | | 10j-19j+10j=13j | | 9^4x+1=27^x |